

ThermalTronix

TT-1384DLD-DS

Long Wave Infrared Focal Plane Array

384×288 17um Uncooled Microbolometer

Issue C

Product Highlights

- a-Si microbolometer
- 384×288 focal plane array
- Pixel pitch 17um by 17um
- Hermetic Vacuum package

- Frame rate 30Hz \sim 60Hz

- On-chip temperature sensor

- Single analog output
- Military standard qualification
- Room temperature operation with TEC

Intellisystem Technologies S.r.l.

Contents

Issue C	1
Figure Lists	3
Glossary	3
1 INTRODUCTION	
2 STRUCTURAL OVERVIEW	4
3 PERFORMANCE SPECIFICATIONS	8
4 ELECTRICAL INTERFACE	9
5 ENVIRONMENTAL CONDITIONS	15
6 DELIVERY	16
7 APPENDIX	16

Intellisystem Technologies S.r.l.

Via Augusto Murri, 1 – 96100 Siracusa - Phone +39 (0)931-1756256 / +39 (0)2-87167549 - Mobile (+39) 335 1880035 em@il: info@intellisystem.it WEB: http://www.intellisystem.it

Table Lists

TABLE 1 Detector Pin List	6
TABLE 2 Bias Requirements For The TEC	7
TABLE 3 Getter Re-activation Conditions	7
TABLE 4 Operability Specification	8
TABLE 5 Operation Bias Conditions	9
TABLE 6 Pulse Voltages	10
TABLE 7 Serial Link Instruction	11
TABLE 8 CTIA Gain Control	. 12
TABLE 9 Image Flip Control	. 12
TABLE 10 Output arrangement	. 13
TABLE 11 Outputs	. 13
TABLE 12 Environment Conditions	. 13

Figure Lists

FIGURE 1 Detector Pin-out Diagram	6
FIGURE 2 Typical temperature sensor output TOUT characteristics	7
FIGURE 3 Clock Diagram	. 10
FIGURE 4 SERDAT Timing Diagram	11

Glossary

CMOS	Compatible Metal Oxide Semiconductor
CTIA	Capacitance Trans-Impedance Amplifier
ESD	Electrical Static Discharge
FPA	Focal Plane Array
IR	Infrared
LWIR	Long Wave Infrared
MEMS	Micro-Electro-Mechanical Systems
NC	Not Connected
NETD	Noise Equivalent Temperature Difference
ROIC	Read Out Integrated Circuit
TEC	Thermo-Electric Cooler

Intellisystem Technologies S.r.l.

1 INTRODUCTION

This document describes the operation conditions and main performance specifications of an uncooled long wave infrared focal plane array detector with reference number of **TT-1384DLD-DS**.

The **TT-1384DLD-DS** infrared detector is based on CMOS-MEMS micro-bolometer technology. The detector is a 384×288 pixels array with pixel pitch of 17um by 17um. The detector is sensitive to the long-wave infrared (LWIR) spectral range of 8um \sim 14um.

The **TT-1384DLD-DS** infrared detector is vacuum packaged with an incorporated non-evaporable getter to maintain long-term vacuum. The temperature of the detector is controlled with a thermo-electric cooler (TEC). The **TT-1384DLD-DS** infrared detector is read-out row-by-row and can provide a single analog output signal. The detector is typically operated under 30Hz~60Hz frame rate.

2 STRUCTURAL OVERVIEW

The **TT-1384DLD-DS** detector consists of following physical structures: hermetic sealed vacuum metal packaging, an IR filter window in the front of the packaging, a non-evaporable getter inside of the packaging to help maintain long-term vacuum level, the FPA chip with an integrated temperature sensor, a thermo-electric cooler (TEC) to stabilize the detector temperature.

2.1 Overall Dimensions

The physical structure and overall dimensions of the detector packaging are described in the Appendix (sheet A to C).

2.2 Pin-out Diagram and List

The pin-out diagram is presented in Figure 1, and the function of each pin is described in Table 1.

2.3 Infrared Filter

An infrared filter window is incorporated in the front side of the detector package.

The outline size of the IR filter is 19.0mm by 16.0mm, its thickness is 1.0mm, The optical interface detail is described in the Appendix (sheet C).

Intellisystem Technologies S.r.l.

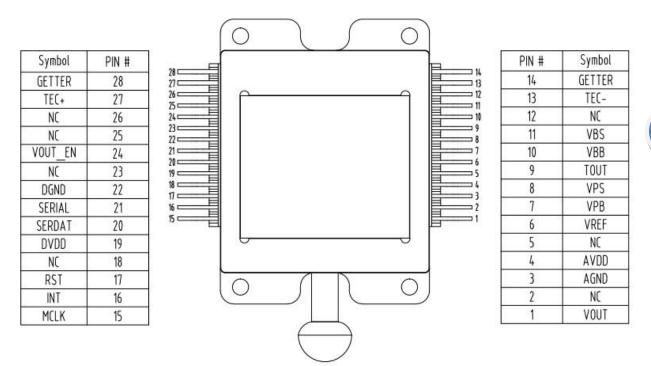


FIGURE 1 Detector Pin-out Diagram

Intellisystem Technologies S.r.l.

Via Augusto Murri, 1 – 96100 Siracusa - Phone +39 (0)931-1756256 / +39 (0)2-87167549 - Mobile (+39) 335 1880035 em@il: info@intellisystem.it WEB: http://www.intellisystem.it

Pin Nr	Symbol	Function	Pin Nr	Symbo
1	VOUT	Video analog output	15	MCLK
2	NC	Not connected	16	INT
3	AGND	Analog ground	17	RST
4	AVDD	Analog supply	18	NC
5	NC	Not connected	19	DVDD
6	VREF	Reference voltage	20	SERDA
7	VPB	Pixel biasing	21	SERIAL
8	VPS	Pixel ground	22	DGND
9	TOUT	Temperature sensor	23	NC
10	VBB	Blind pixel biasing	24	VOUT_
11	VBS	Blind pixel supply	25	NC
12	NC	Not connected	26	NC
13	TEC-	TEC-	27	TEC+
14	GETTER	Getter	28	GETTER

TABLE 1 Detector Pin List

Pin Nr	Symbol	Function
15	MCLK	Main clock
16	INT	Integration time
17	RST	Reset
18	NC	Not connected
19	DVDD	Digital supply
20	SERDAT	Serial link input data
21	SERIAL	Serial link input control
22	DGND	Digital ground
23	NC	Not connected
24	VOUT_EN	Effective display array output
25	NC	Not connected
26	NC	Not connected
27	TEC+	TEC+
28	GETTER	Getter

Note: the NC pins can NOT be connected to any signal bus such as the ground etc.

2.4 Thermo-Electric Cooler

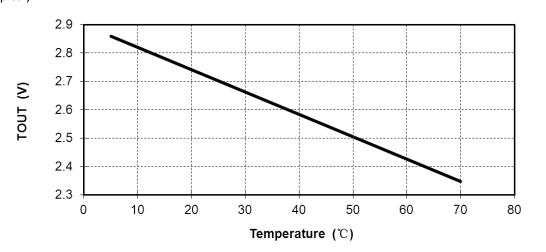
TABLE 2 Bias Requirements For The TEC

Pin Nr	Symbol	Absolute Max Rating
13	TEC-	Voltage: 4.3V Current: 3.0A
27	TEC+	Power: 7.0W

The temperature stabilization is required to be 10mK.

The stabilized temperature of the detector is typically set 10K \sim 20K above the ambient temperature.

2.5 Temperature Sensor


A CMOS temperature sensor is integrated in the FPA ROIC chip. It provides an analog output voltage TOUT (PIN9) which is related directly to the temperature of the detector chip.

TOUT signal is also implemented into the video analog output (VOUT) at each line transition (see Figure)

Intellisystem Technologies S.r.l.

3) A typical TOUT versus the detector chip temperature relationship is shown in Figure 2. The sensitivity of the temperature sensor is about -7.85 mV/K(Typical). TOUT is about 2.7 V for an FPA temperature of 25°C (Typical).

7

FIGURE 2 Typical temperature sensor output TOUT characteristics

2.6 Vacuum and Getter

The **TT-1384DLD-DS** detector is required to operate under high vacuum condition. A non-evaporable getter is integrated in the packaging to maintain the long-term vacuum level. The getter can be electrically re-activated when the performance of the detector is degraded due to the vacuum level degradation. The getter activation is performed by supplying a constant current to the two pins of the getter as shown in Table 3. Re-active the getter by the customer is not recommended.

TABLE 3 Getter Re-activation Conditions

Pin Nr	Symbol	Current	Time
14/28	Getter	2.0A±0.1A	10min

Intellisystem Technologies S.r.l.

2.7 Weight

The total weight of the TT-1384DLD-DS detector is less than 20g.

2.8 Operating Temperature

The operating temperature range of the **TT-1384DLD-DS** detector is from -40° C to $+60^{\circ}$ C. A heat sink condition with typical thermal resistance of 4K/W is required between the packaging base plate and the ambient, especially when the detector is operated at the high end of the temperature range.

2.9 Storage Temperature

The storage temperature range of the **TT-1384DLD-DS** detector is from -40°C to +85°C.

3 PERFORMANCE SPECIFICATION

A detector test report is provided with each delivered detector by the manufacturer, which contains testing results of the responsivity, temporal NETD and operability.

The definitions of several parameters are further explained as following.

3.1 Responsivity

The detector responsivity is not a fixed performance specification parameter, the value supplied the test report is a measured value under the certain biasing and test conditions, and it is for information only.

3.2 Operability specification

3. 2. 1 Non-operating pixel

A pixel is defined as a "non-operating" if:

- its responsivity is less than 0.8x average responsivity or larger than 1.2x average responsivity;

- its NETD is larger than 1.5x average NETD;

3. 2. 2 Cluster

A cluster is defined as a group of at least 3x3 non-operating pixels adjacent.

3. 2. 3 Non-operating Row

A row is considered as non-operating if larger than 50% of the pixels are non-operating.

3. 2. 4 Non-operating Column

A column is considered as non-operating if larger than 50% of the pixels are non-operating.

Intellisystem Technologies S.r.l.

3. 2. 5 Operability Specification

The operability of the delivered detector should meet the requirement in Table 4.

TABLE 4 Operability Specifications

Non-operating row or column	0 non-operating row or column			
Cluster	central zone of 80 x 60: ≤ 0 cluster other area: ≤ 2 clusters			
Non-operating pixels	≤1%			
Operability	≥99%			

4 ELECTRICAL INTERFACE

4.1 Operation Bias Voltages

To properly operate the **TT-1384DLD-DS** detector, various bias voltages should be supplied to each pin as specified in Table 5.

Pin Nr	Symbol	Bias Type		Optimum Value	Range	Max Current	Max RMS Noise
3	AGND	Input	Fixed	0V	_	60mA	_
							2uV(1Hz \sim 1KHz)
4	AVDD	Input	Fixed	5V±100mV	_	60mA	5uV(1Hz \sim 10KHz)
							100uV(1Hz~10MHz)
6	VREF	Innut	Fixed	Given in the		1mA	<100uV
0	VKEF	Input	Fixed	test report	_		<1000V
				Given in the			2uV(1Hz~1KHz)
7	VPB	Input	Tunable		2V~5V	100uA	5uV(1Hz \sim 10KHz)
				test report			100uV(1Hz~10MHz)
8	VPS	Input	Fixed	0V	_	5mA	_
							2uV(1Hz~1KHz)
10	VBB	Input	Fixed	1.7V	_	100uA	5uV(1Hz \sim 10KHz)
							100uV(1Hz~10MHz)
				Civen in the			2uV(1Hz~1KHz)
11	VBS	VBS Input Tunable Given in the 2V~5V 5mA	Tunable	5mA	5uV(1Hz \sim 10KHz)		
				test report			100uV(1Hz~10MHz)
19	DVDD	Input	Fixed	5V±300mV	_	10mA	<100mV
22	DGND	Input	Fixed	0V	_	10mA	—

TABLE 5 Operation Bias Conditions

Intellisystem Technologies S.r.l.

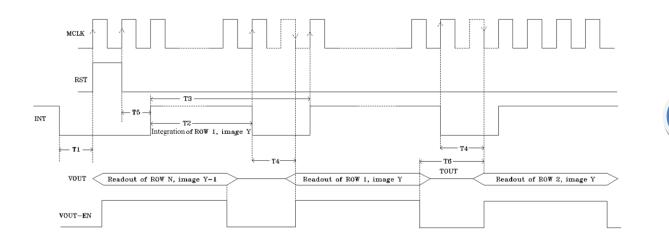
Via Augusto Murri, 1 – 96100 Siracusa - Phone +39 (0)931-1756256 / +39 (0)2-87167549 - Mobile (+39) 335 1880035 em@il: info@intellisystem.it WEB: http://www.intellisystem.it

VPB、 VBS can be adjusted to optimize the detector performance within the above range.

4.2 Pulse Voltage and Clock Diagram

MCLK is the main clock of the ROIC, and it is a continuous pulse signal of 50% duty cycle. It synchronizes the operation of the whole circuit. The frequency of MCLK is 6.25 MHz for a 50 Hz frame rate (Typical). RESET is used to reset the ROIC operation by forcing the integration of the signal on the first row of the FPA. It must not be repeated more than once per frame. RESET must change its state during a rising edge of

MCLK.


INT is the integration signal of the ROIC. The high level of INT presents the integration time of a given row (T2 in Figure 3). The INT phase must be sent at each row. INT must change its state during the rising edges of MCLK. The detector is read row by row in a continuous frame rolling shutter mode. Row N integration and row N-1 readout run simultaneously. The analog output of effective pixels is present after 18.5 TMCLK of the falling edge of the INT (see figure 3).

Pin	Sumbol	Pulse Type			Low Level			High Level	
Nr	Symbol			Min	Typical	Max	Min	Typical	Max
15	MCLK	Input	5V TTL	-0.3V	0V	0.3V	4.7V	5V	5.5V
16	INT	Input	5V TTL	-0.3V	0V	0.3V	4.7V	5V	5.5V
17	RST	Input	5V TTL	-0.3V	0V	0.3V	4.7V	5V	5.5V
20	SERDAT	Input	5V TTL	-0.3V	0V	0.3V	4.7V	5V	5.5V

TABLE 6 Pulse Voltages

Intellisystem Technologies S.r.l.

T1≥15TMCLK, 15TMCLK≤T2(Integration time)≤384 TMCLK, T3≥(384+17)TMCLK, T4=18.5TMCLK, T5≥0

FIGURE 3 Clock Diagram

4.3 Serial Control

The serial control bus is developed for infrared imagers. The serial link (SERDAT: PIN #20) is used to write the required user data. And SERIAL (PIN #21) commands the serial link (SERDAT).

4.3.1 SERIAL

- 4.3.1.1 SERIAL=OV
 - a) SERDAT is off;
 - b) CTIA capacitance is fixed to 14pF.

4. 3. 1. 2 SERIAL=5V

Intellisystem Technologies S.r.l.

Via Augusto Murri, 1 – 96100 Siracusa - Phone +39 (0)931-1756256 / +39 (0)2-87167549 - Mobile (+39) 335 1880035 em@il: info@intellisystem.it WEB: http://www.intellisystem.it

When SERIAL=5V, SERDAT is available.

- a) When SERDAT=0V, CTIA capacitance is fixed to 18pF;
- b) When SERDAT is defined by 4.3.2, all the functions given by the serial link are available.
- 4. 3. 2 Serial Control Bus

SERDAT (PIN #20) is a 51 bits control signal defined as in Table 7. The main feature of the serial interface

include:

- a) CTIA gain value: GAIN
 - b) Image flip: HFLIP、VFLIP

SERDAT can be applied by each frame or just once.

To activate the serial control bus, the first bit named START needs to be set at "1" i.e high level.

The clock frequency of SERDAT is governed by the Master Clock (MCLK). Data will be taken into account if START bit is at high level. Data must change during rising edge of MCLK and will be taken into account at the falling edge of the next RST. The timing diagram of SERDAT is shown in Figure 4.

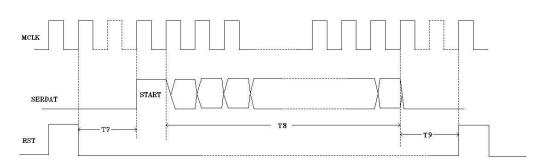

Desition	Length	Nomo	Format	Example		
Position	(in bit number)	Name	(binary/decimal)	Value	Binary conversion	
1	1	START	Binary	1	1	
2	5	Reserved	Binary	0,0,0,0,1	00001	
3	3	GAIN	Binary	1,0,1	101	
4	1	HFLIP	Binary	1	1	
5	1	VFLIP	Binary	1	1	
6	2	Reserved	Binary	1,0	1,0	
				000000000	000000000	
-	20	Reserved	Discourse	0000000000	000000000	
/	38		Binary	000000000	000000000	
				00000000	0000000	

TABLE 7 Serial Link Instruction

Intellisystem Technologies S.r.l.

Via Augusto Murri, 1 – 96100 Siracusa - Phone +39 (0)931-1756256 / +39 (0)2-87167549 - Mobile (+39) 335 1880035 em@il: info@intellisystem.it WEB: http://www.intellisystem.it

T7≥1TMCLK, T8=50TMCLK, T9≥1TMCLK

FIGURE 4 SERDAT Timing Diagram

4. 3. 2. 1 Gain Control

The GAIN enable CTIA gain adaptation for specific operating conditions. The different avilable configurations are as following:

Gain	Value	CTIA Capacitance(pF)
1.00	111	18
1.125	011	16
1.29	101	14
1.50	001	12
1.80	110	10
2.25	010	8
3.00	100	6
4.50	000	4

TABLE 8 CTIA Gain Control

4. 3. 2. 2 Image Flip

The image could be flipped in horizontal and vertical direction using HFLIP and VFLIP input, as described in Table 9.

Intellisystem Technologies S.r.l.

TABLE 9 Image Flip Control

Scanning Direction	HFLIP	VFLIP
right→left/up→down	1	1
right→left/down→up	1	0
left→right/up→down	0	1
left→right/down→up	0	0

14

4.4 Output Characteristics

The detector contains some outputs, named VOUT, TOUT and VOUT_EN.

VOUT is the analog video output, its output arrangement is shown in Table10.

TOUT is the temperature sensor output. VOUT and TOUT are described in Table 11.

VOUT_EN is a digital output of 5V TTL. Its high level indicates the presence of valid data on the analog output (VOUT). And its low level indicates the presence of temperature sensor output TOUT.

Analog output VOUT and TOUT can be loaded by a resistance $R \ge 1M\Omega$ in parallel with a capacitance C $\le 10pF$.

Intellisystem Technologies S.r.l.

TABLE	10 Output	arrangement

	VOUT
Column	1 Row 1
Column	2 Row 1
Column	384 Row 1
Column	1 Row 2
Column	2 Row 2
Column	384 Row 2
Column	1 Row 3
Column	2 Row 3
Column	384 Row 288

TABLE 11 Outputs

Pin Nr	Symbol	Output Type	9	Range
1	VOUT	Output	variable	0.4V~4.0V
9	TOUT	Output	variable	2.0V~3.3V

5 ENVIRONMENTAL CONDITIONS

TT-1384DLD-DS detector is GJB-qualified (MIL-STD equivalent). The detector qualification is performed on the basis of sampling from the manufactured products and is representative of the typical manufacturing technology level. The detector should be qualified to the climatic and mechanical environmental conditions as listed in Table 12.

Nr	ltem	Standard and Method
1	High temperature storage	GJB 1788 Method 2020
2	Low temperature storage	GJB 1788 Method 2040
3	Thermal Shocks	GJB 1788 Method 2010
4	Random vibration	GJB 1788 Method 2080
5	Shocks	GJB 1788 Method 2070

Intellisystem Technologies S.r.l.

Via Augusto Murri, 1 – 96100 Siracusa - Phone +39 (0)931-1756256 / +39 (0)2-87167549 - Mobile (+39) 335 1880035 em@il: info@intellisystem.it WEB: http://www.intellisystem.it

6 **DELIVERY**

6.1 Packing

During transportation, the detector is placed into a plastic box and wedged with conductive foam, a testing report is delivered together with each detector.

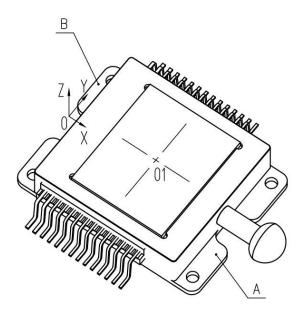
6.2 Storage

Detectors should be stored at conditions: temperature at -10°C \sim 40°C, relative humidity is less than 70%, dry and non-corrosive environment.

6.3 General Recommendations

Specific care should be taken in handling the **TT-1384DLD-DS** detector:

- a) Electrostatic discharge (ESD) protection
- b) Avoid directing the detector directly towards the sun, especially in the case the detector is mounted with a lens

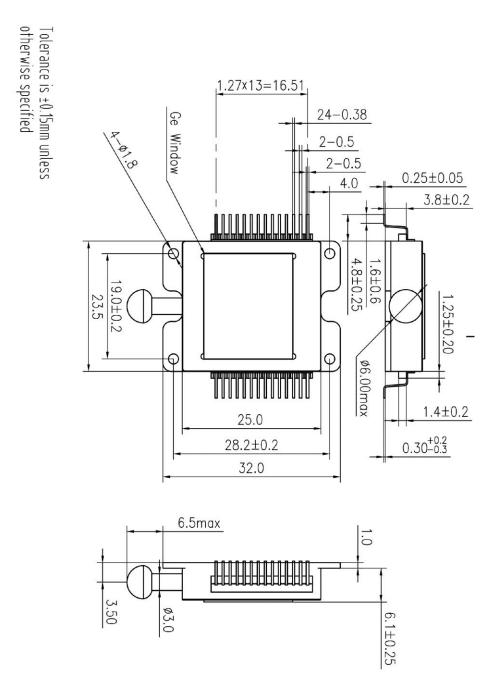

7 APPENDIX

- a) Sheet A: General View
- b) Sheet B: Mechanical Interface
- c) Sheet C: Optical Interface

Via Augusto Murri, 1 – 96100 Siracusa - Phone +39 (0)931-1756256 / +39 (0)2-87167549 - Mobile (+39) 335 1880035 em@il: info@intellisystem.it WEB: http://www.intellisystem.it

Sheet A General View

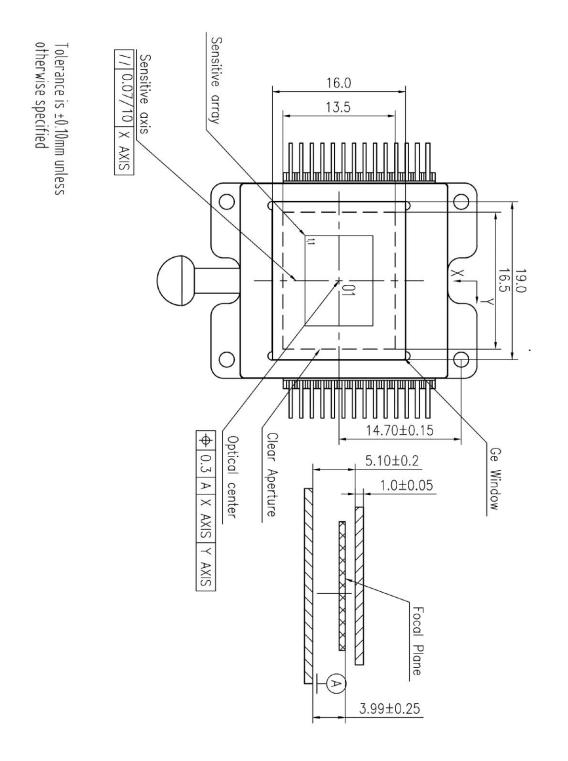
NOTE


- 1-Mechanical reference OXYZ are materialised by: XY: Mechanical Mounting surface (A plane) X: Symmetry axis of the structure Y: Perpendicular to X axis through line B

 - Z: Normal to XY plane
- 0: XYZ axis center
- 2-01: Optical plane center

Intellisystem Technologies S.r.l.

Sheet B Mechanical Interface



Intellisystem Technologies S.r.l.

Via Augusto Murri, 1 – 96100 Siracusa - Phone +39 (0)931-1756256 / +39 (0)2-87167549 - Mobile (+39) 335 1880035 em@il: info@intellisystem.it WEB: http://www.intellisystem.it

Sheet C Optical Interface

Intellisystem Technologies S.r.l.